Small GTPase RhoA and its effector rho kinase mediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke. METHODS OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure. CONCLUSIONS Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.
منابع مشابه
Involvement of RhoA and Rho kinase in neutrophil-stimulated endothelial hyperpermeability.
Neutrophil-induced microvascular leakage is an early event in ischemic and inflammatory heart diseases. The specific signaling paradigm by which neutrophils increase microvascular permeability is not yet established. We investigated whether the small GTPase RhoA and its downstream effector Rho kinase mediate neutrophil-stimulated endothelial hyperpermeability. We assessed the effect of neutroph...
متن کاملDiabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway.
OBJECTIVE Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. METHODS AND RESULTS The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways control...
متن کاملRhoA/Rho-kinase in erectile tissue: mechanisms of disease and therapeutic insights.
Penile erection is a complicated event involving the regulation of corpus cavernosal smooth muscle tone. Recently, the small monomeric G-protein RhoA and its downstream effector Rho-kinase have been proposed to be important players for mediating vasoconstriction in the penis. RhoA/Rho-kinase increases MLC (myosin light chain) phosphorylation through inhibition of MLCP (MLC phosphatase) thereby ...
متن کاملInvolvement of RhoA/ROCK1 signaling pathway in hyperglycemia-induced microvascular endothelial dysfunction in diabetic retinopathy.
Diabetic retinopathy (DR) is a well-known serious complication of diabetes mellitus (DM), and can eventually advance to end-stage blindness. In the early stage of DR, endothelial cell barrier disorganized primarily and tight junction (TJ) protein composition transformed subsequently. The small GTPase RhoA and its downstream effector Rho-associated coiled-coil containing protein kinase 1 (ROCK1)...
متن کاملRole of RhoA and Rho kinase in lysophosphatidic acid-induced endothelial barrier dysfunction.
In the present study, the roles of the small GTPase RhoA and its target Rho kinase in endothelial permeability were investigated in vitro. We have shown previously that, in addition to a rise in the intracellular Ca(2+) concentration ([Ca(2+)](i)), RhoA is involved in the prolonged thrombin-induced barrier dysfunction. To study the role of RhoA and Rho kinase more specifically, endothelial cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 41 9 شماره
صفحات -
تاریخ انتشار 2010